Improving the Efficiency of Blockchain
Applications with Smart Contract based
Cyber-insurance

Jia Xu Yongqi Wu

Jiangsu Key Laboratory of Big Jiangsu Key Laboratory of Big Department of Computing
Data Security and Intelligent

Data Security and Intelligent

Processing Processing

Nanjing University of Posts and Nanjing University of Posts and

Telecommunications
Nanjing, China

Telecommunications
Nanjing, China
xujia@njupt.edu.cn

Abstract—Blockchain based applications benefit from decen-
tralization, data privacy, and anonymity. However, they may
suffer from inefficiency due to underlying blockchain. In this
paper, we aim to address this limitation while still enjoying the
privacy and anonymity. Taking the blockchain based crowdsourc-
ing system as an example, we propose a new smart contract based
cyber-insurance framework, which can greatly shorten the delay,
and enable the workers to obtain the economic compensation for
increased security risk caused by a conflict between the need
to provide service quickly and delay in payment. We model
the process of determining insurance premium and number of
confirmations as a Stackelberg Game and prove the existence of
Stackelberg Equilibria, at which the utility of the requester is
maximized, and none of the workers can improve its utility by
unilaterally deviating from its current strategy. The experimental
results show that our framework can definitely improve the time
efficiency of crowdsourcing. Particularly, it takes on average
only 33% of the time required by the naive blockchain based
crowdsouring solution for time-sensitive cases.

Index Terms—blockchain, cyber-insurance, smart contract,
game theory

I. INTRODUCTION

The rapid development of blockchain technology in recent
years is largely due to the widespread attention of Bitcoin
[1]. Based on the blockchain, Bitcoin is a fully point-to-point
digital currency, and independent of any centralized nodes. All
transaction records are fully documented in Bitcoin. People
have discovered that some advantages of blockchain, such as
privacy, anonymity. Blockchain can be applied not only in
digital currency, but also in other application scenarios such
as crowdsourcing [2], energy management [3], supply chain
management [4], and resource allocation [5].

Unfortunately, the underlying blockchain technology may
also introduce inefficiency to the applications due to the decen-
tralization of the blockchain. The inefficiency is unacceptable
to some time-sensitive applications, where the benefits of users

This work has been supported in part by the NSFC (No. 61872193), NSF
(No. 1717315), and STITP of NJUPT (No. SYB2018019).

Q16010119@njupt.edu.cn

Xiapu Luo Dejun Yang
Department of Computer
The Hong Kong Polytechnic Science
University Colorado School of Mines
Hongkong, China Golden, USA
csxluo@comp.polyu.edu.hk djyang @mines.edu

might decrease over time rapidly. For example, in medical
diagnostic crowdsourcing, the people who provide the medical
case do not want to disclose their private medical information.
In this case, a decentralized blockchain application system is
more convincing to the privacy of the crowd. However, the
doctors hope to be able to collect cases similar to patients
as soon as possible to help him make the accurate judgments
before their condition deteriorates. Many applications such as
the crowdsensing for arrival time prediction of buses [23] and
real-time monitoring [24] have the real-time requirement.

It is a universal issue to tradeoff the security and time ef-
ficiency for time-sensitive blockchain applications. The ineffi-
ciency of blockchain applications is largely due to the fact that
any node is considered to be potentially untrustworthy based
on blockchain assumptions. In order to ensure user security,
every operation is considered valid only if it is confirmed by
the majority of the nodes. Some studies aim improving the
efficiency of blockchain based applications. For example, the
studies of [6-8] aim to improve the efficiency of the blockchain
by modifying the blockchain protocol. Unfortunately, such
modifications may not be quickly adopted by the widely-used
blockchain platforms, such as Ethereum [21], and they may
also lead to hard fork to the blockchain.

Cyber-insurance is a promising approach to efficiently man-
age the cyber risks by transferring them to insurers [9]. It
can encourage the service providers (the crowd in medical
diagnostic crowdsourcing case) to provide their service in a
much faster speed since the consumers (the doctors in medical
diagnostic crowdsourcing case) of time-sensitive applications
are likely to pay insurance premium for the timely service to
compensate the potential loss of providers.

Ethereum is able to provide smart contracts, a Turing-
complete programming language [12], which enable users to
build applications atop open blockchain and also provides
a safe and reliable way to implement cyber-insurance [27].
By using smart contracts, we can complete cyber-insurance

without introducing any actual third-party insurance organiza-
tion, so as not to hurt the advantages of decentralization of
blockchain. Since Ethereum is the largest blockchain platform
that supports smart contracts, we implement our solution as
smart contracts running on Ethereum.

In this paper, we propose the novel framework for the
blockchain based crowdsourcing systems. The smart contract
based cyber-insurance framework can improve the time effi-
ciency, and enable the workers of crowdsourcing to obtain the
premium to avoid the economic loss due to the increased secu-
rity risk. Our smart contract based cyber-insurance framework
can be applied to not only crowdsourcing systems, but also
many other blockchain applications through transferring the
risk to the consumers of transactions.

The main contributions of this paper are as follows:

« To the best of our knowledge, we are the first to design
a smart contract based cyber-insurance framework to
improve the time efficiency of blockchain applications.

o Through theoretical analysis, we show that the proposed
smart contract based cyber-insurance only takes at most
37.5% and 31.25% of time to perform each crowdsourc-
ing task in Bitcoin and Ethereum, respectively, comparing
with naive smart contract.

e« We determine the insurance premium and number of
confirmations using Stackelberg Game. We compute the
unique optimal strategy for workers. Further, we show
that there exists at least one positive insurance premium
that maximizes the utility of requester when the value
function of the task decreases sharply with time.

o We implement our framework on the Ethereum private
test network using Geth [11]. We show that our frame-
work definitely improves the time efficiency of the crowd-
sourcing. Particularly, it takes averagely 33% of the time
compared with naive blockchain based crowdsourcing in
time-sensitive case.

The rest of the paper is organized as follows. Section II
reviews the state-of-art research. Section III presents a naive
smart contract for blockchain based crowdsourcing. Section IV
presents our smart contract based cyber-insurance framework.
Section V presents the detailed analysis of our framework.
Section VI presents a game theory method to determine the
insurance premium and number of confirmations. Performance
evaluation is presented in Section VII. We conclude this paper
in Section VIIIL.

II. RELATED WORK

Some previous studies have been devoted to launch crowd-
sourcing atop open blockchain to achieve decentralization. Ze-
bralancer [2] focuses on privacy and anonymity by combining
various technologies, such as zk-SNARKSs and smart contracts.
CrowdBC [15] is the first one to combine crowdsourcing
with blockchain. CrowdBC mainly focuses on the low agency
fee by decentralization. Some other research [3] aims at
performing crowdsourcing atop blockchain in certain fields.
The time efficiency of above mentioned blockchain based

crowdsourcing systems relies on the blockchain protocol itself,
which may be quite slow.

Some research has been devoted to improving the efficiency
of blockchain applications from different perspectives [6-8].
GHOST protocol [6] and full sharding [8] aim at improving
the speed of confirming transactions without security loss. A
truly distributed ledger system based on a lean graph of cross-
verifying transactions is proposed in [7]. These systems need
to change the blockchain protocol to improve the confirmation
speed of transactions. One of advantages of our method is that
there is no need to change the blockchain protocol itself.

A number of cyber-insurance products have been made in
the market [10]. There are some studies about blockchain
applications using cyber-insurance [16, 17]. [16] discusses the
financial issue of introducing smart contract into blockchain,
and proposes a framework of insurance against double-
spending. But the mechanism proposed in [16] is not applied to
any specific application. In [17], risk management is achieved
by introducing the role of insurance provider in the blockchain
service market. However, none of above work uses cyber-
insurance to speed up time-sensitive applications.

Overall, there is no off-the-shelf framework of accelerating
most of blockchain applications.

III. SMART CONTRACT FOR CROWDSOURCING

In our blockchain based crowdsourcing system, each user
can participate in not only crowdsourcing but also mining
blocks. For crowdsourcing, a user can publicize tasks, submit
bids, and perform tasks. This means that a user might be a
requester of one task and a worker for another. Each user has
its unique identity defined by a pair of public and private keys.
Since the blockchain technology is Sybil-proof by adopting
the PoW (Proof of Work), we do not put restrictions on
registration. In other words, a user can arbitrarily pick a pair
of keys to hide its true identity. For a pair of keys that is long
enough, we can safely assume that the collision is impossible,
and users have no incentive to generate multiple pairs of keys.

Without loss of generality, assume that a crowd of workers
U = {1,2,--- ,n} are interested in performing the crowd-
sourcing task publicized by the task requester in a crowd-
sourcing activity. We consider the crowdsourcing process as
a sealed reverse auction, which is widely used in many
crowdsourcing systems [18, 25, 26]. The process of blockchain
based crowdsourcing consists of following 5 steps.

(1) Task Announcement: The requester publicizes a
task I' = (PK, Type, SelectionRule (-) , Payment Rule (-)),
where PK is the public key of the requester, Type is the
type of the task. SelectionRule(-) and PaymentRule ()
are functions of bid profile of workers that output a set of
winners S and their payment, respectively. Meanwhile, the
requester announces a smart contract for the crowdsourcing
activity to the entire network. The smart contract gives the
implementation of crowdsourcing operations, including bid,
winner selection rule, and payment rule.

(2) Bidding: Once a task is publicized, each worker signs
the crowdsourcing contract with the requester, and submits its

bid including the bidding price that the user wants to charge
for performing the task.

(3) Winner Selection and Notification: Once there are
enough bids, winner set S can be selected by the task
requester according to the winner selection rule implemented
in crowdsourcing contract. The task requester notifies winners
of the selection results.

(4) Answer Collection: The winners perform the task, and
submit their answers to the crowdsourcing system. Same as the
previous work concerning blockchain based crowdsourcing [2,
3], we also assume that once the task is finished, each worker
will get a flag for denoting its work.

(5) Payment: The payment to the workers who have sub-
mitted their answers will be determined by the task requester
according to the payment rule in crowdsourcing contract. The
winners get the payment.

Contract 1 : Crowdsourcing Contract
1: function Bidding(Bid)

2 if the bid is not enough then

3 record the bid to bid profile B;
4 end if

5: end function
6
7
8
9

: function GetPayment(FinishFlag)
if FinishFlag == true then
payment=PaymentRule(FinishFlag);
: send the payment to the winner;
10: end if
11: end function
12: function PaymentRule(FinishF'lag)

14: end function
15: function Selection Rule(B)

17: end function

The above crowdsourcing process can be implemented by
a smart contract. The naive smart contract puts all crowd-
sourcing information, including the description of the task,
all of bids and answers, on the blockchain, just like the
transactions in the original blockchain digital currency. All the
nodes in the network can verify the crowdsourcing information
authenticity, and decide which block to continue mining on.
Satoshi Nakamoto has proved this method to be reliable [1].

The naive smart contract for the blockchain based crowd-
sourcing system is illustrated in Contract 1. The task requester
puts such a smart contract consisting of the winner selection
rule, and payment determination rule, on the Ethereum net-
work. All workers can see it, and can call function Bidding ()
to submit their bids. The function Bidding (-) first checks
whether there are enough bids. If not, it then adds this bid in
bid profile B, which records all bids. Otherwise, the requester
runs function SelectionRule (-), which takes bid profile B as
input, and returns a set of winners. Each winner will receive a
FinishFlag that denotes the result of its work when the task
is finished. Then the task requester calculates the payment to

the winners according to the function PaymentRule (-). The
winners get payment by calling function GetPayment (-).

IV. SMART CONTRACT BASED CYBER-INSURANCE

The naive crowdsourcing contract can deal with crowd-
sourcing tasks. However, all transaction information of task,
bid, and payment needs to be confirmed by a certain number
of following blocks, which greatly reduced time efficiency of
crowdsourcing. In Bitcoin, a transaction is confirmed after 6
confirmations, which takes almost one hour. In Ethereum, it
also takes about two minutes to confirm a smart contract. For
a crowdsourcing system with a lot of time-sensitive tasks, it
is unacceptable to wait long time for collecting answers.

In this section, we improve the time efficiency of blockchain
based crowdsourcing through reducing the number of confir-
mations, and propose the smart contract based cyber-insurance
to avoid the potential security threats of this reduction for
the workers. Let Ny be the number of confirmations needed
for a block to be confirmed by the network. Take the winner
selection and notification step as an example, the winners must
be confirmed by the following 6 blocks in Bitcoin and 12
blocks in Ethereum, respectively. This means the workers need
to wait for a long time before performing tasks. To speed
up the confirmation process of crowdsourcing, we reduce the
number of confirmations to N;, N; < Ny, 7 € S. However, this
straightforward method increases the security risk of workers.
The confirmed blockchain with length N; may be replaced by
another longer blockchain. If the replacement happened, the
workers will not get any payment even they have submitted
the answers. Even worse, the potential security threat might be
used by some malicious task requesters to conduct the attack
against the workers, e.g., double-spend attack [13].

To deal with this problem, we proposed a new method
that can transfer the potential risks to the task requesters. We
introduce an Ethereum smart contract that serves as a cyber-
insurance against the double-spend attack.

Contract 2 : Cyber-insurance Contract
1: function CreateInsurance(PK,C)
2: if enough ether as the requester claims then
3: store the ether with requester information into
contract;
end if
: end function
: function ClaimCompensation(tz Prime)
if txPrime is insured and is attacked then
send stored insurance to the worker;
9: end if
10: end function
11: function Retrievelnsurance()

® DR

12: if the insured transaction is confirmed then
13: send ether back to the requester;
14: end if

15: end function

In order to ensure the effect of cyber-insurance, that is, the
smart contract of cyber-insurance can protect all the blocks
containing the task information from being attacked, both of
requester and workers in the crowdsourcing should first sign
the cyber-insurance contract illustrated in Contract 2. Once
the cyber-insurance contract is signed, the task requester can
call function CreateInsurance () to sign a cyber-insurance
with each worker. Let C' be the insurance premium. The
insurance premium must be included in the call of function
CreateInsurance (-) that the task publisher sends to the
network. If any worker ¢ € U is attacked by double-spend,
he/she can call function ClaimCompensation () to get the
insurance premium of C' to compensate the cost of performing
task. This function checks if worker 7 is really attacked
and if the cyber-insurance contract is signed by worker i,
where txPrime refers to the transaction that is insured. If
so, the insurance premium C will be automatically sent to
worker ¢. If Ny blocks are generated after the cyber-insurance
contract is signed, i.e., the submitted answer of worker i is
confirmed by the network, the task requester can call function
Retrievelnsurance (-) to retrieve its insurance premium.

Blockchain
S (O
< ~sh announces U,
‘ {——= Le
_ Contract 2 =
(-l) Cyber call Workers
insurance T
" Createlnsurance()
Sign $
[Insurance
Requester
(2) Task ” publicize task @
Announcement :>
Requester announces Contract 1
-
(3) Bidding idding() (PR,
Bids Workers
------- Ty - mat
(4) Winner SelectionRule() N
Selection :>
and Requester Winners ()
Notification —f—waiting for .-_f__.
...... fi ti
contirmations wOrkerS
J_ submit
(5) Answer answers —O°
Collection Tt
Answers =
Winners
call call
(6) Payment Retrivelnsurance(GetPayment ()Vv_
or Claim :> Insurance =\
or payment [,]
Requester i
call —_— call Winners
\/ PaymentRule() ClaimInsurance()

Fig. 1. The improved workflow of blockchain time-sensitive crowdsourcing.

The improved workflow of blockchain based time-sensitive
crowdsourcing illustrated in Fig. 1 is as follows:

(1) Cyber-insurance Sign: Each worker announces Con-
tract 2 to the whole network and signs insurance with the
requester. For signing Contract 2, the requester determines the

insurance premium C, and each worker ¢ € U determines N;.

(2) Task Announcement: The requester publicizes a crowd-
sourcing task and announces Contract 1 to the network.

(3) Bidding: The workers submit the bid and sign Contract
1 with the requester.

(4) Winner Selection and Notification: The requester
selects a set of winners .S, determines the payment to the
winners, and notifies winners of the determination.

(5) Answer Collection: The winners perform the task, and
submit their answers to the requester.

(6) Payment or Claim: Each winner waits for the payment.
If any worker ¢ € U is attacked, he/she is paid the insurance
premium of C. Otherwise, if there is still no attack after Ny
confirmations, the requester retrieves its insurance premium,
and the winners get the payment.

V. TIME EFFICIENCY ANALYSIS OF SMART CONTRACT
BASED CYBER-INSURANCE

We use T, and T to denote the total time needed to perform
a crowdsourcing task using naive crowdsourcing contract and
cyber-insurance contract, respectively. Let D be the frequency
of block generation. Note that we only aim to speed up
the answer collection for the task requesters, and ignore the
time for payment confirmation in our time efficiency analysis
because the answers have been collected before this step.

First, we analyze the time efficiency of the blockchain based
crowdsourcing using naive crowdsourcing contract. Recalling
the crowdsourcing process given in Section III, we only
consider the time spent in Step (1) to Step (4). Obviously,
each of four steps needs time of Ny x D, and we can conclude
straightforwardly that T,, = 4NyD.

Then, we analyze the time efficiency of the blockchain
based crowdsourcing using cyber-insurance contract. We use
t1,t9,ts,t4 to represent the time spent from Step (2) to Step
(5), in Section IV, respectively. We don’t consider the time
spent to sign the insurance contract because this can be done
before launching the crowdsourcing.

For task announcement step, we can safely believe in the
task publicized, and only verify it in winner notification step.
When a task is publicized, it should wait for the next block
to be included in the blockchain network, thus t; = D. We
apply the same method to the bidding step, and get t5 = D.
After all the bids are collected, in Step (4), each winner i €
S needs to wait for NV; confirmations to confirm that both
of task and the winner selection are valid before he/she can
finally perform the task. Thus, the time spent in this step is
t3 = D x masx N;. Finally, we assume that all winners can

perform the Zteelsk fast enough, comparing with the time of block
generation, i.e., the next block will contain all the answers of
the task. Thus the time spent in this step is t4 = D. Overall,
the time spent for each task using cyber-insurance contract is

TC:t1+t2+t3+t4: 3+maéle x D.
1€

Theorem 1: The smart contract based cyber-insurance
framework takes at most 37.5% and 31.25% of time to

perform each crowdsourcing task theoretically, in Bitcoin and
Ethereum, respectively, comparing with naive smart contract.
Proof: Since maxN < Ny, we have T./T, <

(34 Np) /4Ny. Recall that Ny is 6 and 12 in Bitcoin and
Ethereum, respectively, we get the theorem. [|

Since the difficulty of work D relies on the blockchain plat-
form and cannot be changed, 7, totally depends on measx N;.

Note that the above time efficiency analysis can be applied to
most blockchain based applications.

VI. DETERMINATION OF INSURANCE PREMIUM AND
NUMBER OF CONFIRMATIONS

In Step (1) of the improved workflow of blockchain based
time-sensitive crowdsourcing given in Section IV, each winner
i € S determines N;, and the requester determines the
insurance premium C. We model the determination process as
Stackelberg Game [19], which we call the Insurance Premium
and Confirmation (IPC) game. Stackelberg Game is usually
used to model the interaction between two types of players:
leader and followers. The leader makes its move first. After
the leader chooses a strategy, each follower always chooses
the best response strategy that maximizes its utility. Knowing
this reaction from the followers, the leader chooses a strategy
to maximize its utility. The optimal strategies of both leader
and followers constitute the Stackelberg Equilibria. In TPC
game, the requester is leader and the winners are followers. In
the first stage, the requester announces its insurance premium
C}; in the second stage, each winner strategizes its number of
confirmations to maximize its own utility.

A. Utilities of Requester and Workers
The utility of the requester is:

ug (Ni) = stz (Vi) = Z (1 =p(Ni))ri ZSP(i) C
1€ 1€
where v; (N;) is the Value of the answer provided by worker

i. According to the analysis in Section V, we know that
the total time of crowdsourcing is linear to the number of
confirmations /V;. Since we are discussing the time-sensitive
crowdsourcing, v; (N;) should be a decrease function of N;.
r; denotes the payment of crowdsourcing to worker ¢, which
depends on neither the insurance premium nor the number of
confirmations. So r; can be viewed as a constant in this game.
p (IV;) is the probability of suffering double-spend attack. To
make our model applicable to most cases, we do not specialize
p (IV;) here. However, p (IV;) is a convex downward decreasing
function of NV; in most existing research [13, 21]. Note that
for the requester, the cost of launching double-spend attack
increases since we introduce the insurance premium. Thus our
smart contract based cyber-insurance enhances the resistance
to double-spend attack. Let o be the maintenance fee the
requester needs to pay.
The utility of any worker ¢ is:

ui(Ni)_{gl—puvi))xn+p<Ni>xc—ﬁNi, i¢S
) ieS
(D

where [is the maintenance fee per unit time of each worker to
perform Contract 2. The maintenance fee is the cost to inform
requester periodically that workers are still in work. Since we
focus on the time-sensitive tasks, the requester may not be
patient enough to wait without periodic message. Moreover,
if a malicious worker wants to launch a sybil attack or a
flood attack to disturb the crowdsourcing, this maintenance
fee gives each worker an extra cost, which is proportional
to time, making the cost of launching the attack higher. The
total currency depends on the maximum confirmation time
(number of confirmations) for all winners. The code structure
of Contract 1 and Contract 2 are different, and thus they have
different maintenance fees, i.e., o # (.

B. Determine the Number of Confirmations

Given the insurance premium C, the optimal strategy of

any winner ¢ can be computed by solving max wu; (N;).
0<N;<No

Let N;* be the optimal strategy of any winner i. We have:
Lemma 1: Given the insurance premium C' > 0, the optimal
strategy of any winner ¢ is

0, C>r
Ny = { arg NiIél[%,)J(\fo] u; (N;), r;>C>r;— W
0, 0<C<r— sy
Proof: Based on (1), we rewrite u; (IV;) as
u; (N;) =r; +p(N;) * (C —r;) — B* N;

Case 1: C — r; > 0. In this case, u; (N;) is monotonic
decreasing with N;. Let N; = 0, we have u; (0) = r; +p (0) %
(C —r;) > 0. Thus N =0 in this case.

Case 2: C'—r; < 0. We observe the value of u; (N; + 1) —
u; (IN;) for VN; € [0, No — 1]:

u; (N +1) —u; (N;) = (p(Ni +1) —p(Ni)) x(C —1i) = B
2

Recall that p (NN;) is a convex downward decreasing func-

tion of N;, we have 1 > p(0) > p(1) > --- > p(Ng) > 0

and

p(0)=p(1)>p(1)=p(2)>-->p{No—1)p(No) >0
3)

We can see that the value of u; (N; + 1) —u; (IN;) decreases
with IV; € [0, Ny — 1] based on (3). This means u; (IV;) is a
concave function. We further suppose that p (Ng — 1) —p (Np)
is very close to O since it provides adequate resistance to
double-spend attack. Let N; = Ny — 1, and substitute it into
(2), we can conclude that u; (Ng) —u; (Ng —1) <0 .

To analyze the monotonicity of u; (IN;), we consider the
value of u; (1) — u; (0) in the following two cases:

Case 2.1:

ui (1) = u; (0) = (p(1) —p(0)) * (C—ri) =8 2 0,

e, C < r; — TOETOR Note that u; (N;) is a concave
function and w; (Nog — u; (Ng— 1) < 0, there must be an

N} =arg max u; (IV;).
g max (i)

Case '2.2: u; (1) — u; (0) < 0, i.e.,. C <ri— W.
u; (IV;) is a monotone decreasing function on N; € [0, N]. In
this case, u; (0) = (1 —p(0)) r; +p (0) > 0. Thus N} = 0.

|

C. Requester Utility Maximization

According to the above analysis, the requester, which is
the leader in the Stackelberg Game, knows that there exists
a unique optimal strategy N, for each winer ¢ for any given
value of C. Hence the optimal strategy of the requester can
be computed by solving max ug (N;*),i € S. We have:

Lemma 2: Given the optimal strategy profile of workers,
there exists the optimal strategy C* > 0 of requester if

dv; (N; * dp (N
2”7 >3 72%020”

i€S €S €S
Proof: The derivative of ug (V) when C = 0 is

dug (N7) _ §~ doi (NF) dp (N}")

dc C:Oiz dc c:oJrZ dc c:orl

€S €S
—ZP(N;)
i€S
%et a positive insurance premium, we need to let
duO(N >0, i.e

dc C=0 >

dvl [* dp (Nz*)
IR D DILAED DE e N
i€S €S €8

There must exist at least one optimal strategy C* > 0 that
maximizes ug (IV;) [|
Lemma 1 and Lemma 2 lead to the following theorem:

Theorem 2: The Stackelberg Equilibria of IPC game with
positive insurance premium exists if

S e

€S €S

AL
= dec c=o

Note that (4) describes the time-sensitivity of crowdsourcing
tasks since v; (IV;) is the value function of tasks with time.
This means that the positive insurance premium exists only if
the value decreases sharply with the time.

VII. PERFORMANCE EVALUATION

We implemented the smart contract based cyber-insurance
framework on Ethereum private test network composed of
one requester and 100 workers. Geth v1.8.27 [11] is used for
mining blocks and signing smart contracts. In addition, an
extra miner with a 2.6GHz Intel Core i7 CPU is responsible
for maintaining the system. To verify the robustness of our
crowdsourcing system, we set three different value functions
to represent time-sensitive task, slight time-sensitive task, and
time-insensitive task, respectively: v; (N;) = %ﬂ ,vi (N;) =
log, (4 — 1&55). and v; (N;) = 2. For p (N;), we use results
from [13], and set p(N;) = 1 — SN cw. (1~
ANixm — (1 — A)™AN: when A = 10%. o and 3 are set
to le-3 ether for maintaining the network. The average time

of block generation is one second. For crowdsourcing, the bids
are generated from Cartier 3-day auctions data set [20], which
is normalized such that the highest bidding price is one ether.
We select the first 10 workers to perform the crowdsourcing
task, and apply VCG payment rule [12]. Each measurement
is averaged over 1000 instances.

A. Strategies of Requester and Workers

Fig. 2 shows the insurance premium with different main-
tenance fee of each worker. We can see that the insurance
premium decreases slightly with increasing maintenance fee
for the time-sensitive task and slight time-sensitive task. We
know that the utility of any worker will decrease when the
maintenance fee increases according to (1). So the workers will
have little incentive to delay their service, and the requester can
give fewer premiums to convince workers. Moreover, when the
task is time-insensitive, the insurance premium is small since
there is not much stimulation for the requester to give the
insurance premium.

——time-sensitive task

Number of confirmations (N,)

El
0 02 04 06 08 1 12 14 16 18 2
Maintenance fee () 10°

Fig. 2. Strategy of the requester Fig. 3. Strategy of the workers

From Fig. 3, we can see that, regardless of the value of j3,
the requester will always convince workers to accelerate the
crowdsourcing service for all kinds of tasks. It is an amazing
observation that the workers give different strategies for three
kinds of tasks. For the time-insensitive task, as the analysis
given above, the insurance premium is small, and the workers
have to cut down the confirmations in order to reduce the cost.
For the slight time-sensitive task, the insurance premium can
cover the cost when the maintenance fee is low. However,
when the maintenance fee increases, the workers tend to
gain the payment from the requester because the insurance
premium is not sufficient to cover the maintenance fee. Since
the requester provides the highest insurance premium to the
workers for time-sensitive task, the workers always submit
their answers as long as the winner selection is finished, even
when the maintenance fee is high.

B. Utilities of the Requester and Workers

The utility of requester or worker depend on the results of
IPC game. Fig. 4 and Fig. 5 depict the utilities of the requester
and workers, respectively. For the time-sensitive task and slight
time-sensitive task, we already know that the requester tends
to reduce the insurance premium when the maintenance fee
increases according to Fig. 2. Thus the requester’s utility will
increase accordingly. On the other side, as maintenance fee
increases, the average utility of the worker decreases since they

need to pay more maintenance fee. Note that the workers in
time-sensitive task will gain more utility than other tasks. This
is because the requester gives highest insurance premium for
the time-sensitive task. Accordingly, the requester’s utility in
time-sensitive task is lower than those in slight time-sensitive
task and time-insensitive task.

C. Running Time

We measure the running time of crowdsourcing using smart
contract based cyber-insurance under different NV;. The value
of N; is in fact determined by the IPC game. Here we set
N; to certain values in order to observe the impact of N; on
running time. We can see from Fig. 6 that the running time is
linear increased to N;. This consistent with our time efficiency
analysis of smart contract based cyber-insurance.

[| e time-insensitive task
2004 S 07

2003

Utilty of the requester

2002 0984

°[[+~ time-sensitive task
0902 |- |~ slight time-sensitive task
|—o— time-insensitive task

2001

2
0 02 04 06 08 1 12 14 16 18 2
Maintenance fee () x109

0 02 04 06 08 1 12 14 16 18 2
Maintenance fee (f) x109

Fig. 4. Utility of the requester ~ Fig. 5. Average utility of the workers

We can see from Fig. 7 that the running time increases when
the number of tasks goes up. Our smart contract based cyber-
insurance framework can improve the time efficiency for all
three kinds of tasks. Comparing with the naive smart contract
(Contract 1), it takes only averagely 33% running time in time-
sensitive case. For the cases of slight time-sensitive task and
time-insensitive task, the running time is about 45% and 78%
of the naive one, respectively.

——naive
- time-sensitive task

400 F|——slight time-sensitive task
—e—time-insensitive task

150
100,
50

0 1 2 3 “ 5 6 10 15 20 25 30 35 40 45 50
Number of confirmations (N,) Number of tasks

Running time/s
Running time/s.

Fig. 6. Running time with differentFig. 7. Running time with different
number of confirmations number of tasks

VIII. CONCLUSION

In this paper, we have designed the smart contract based
cyber-insurance framework to accelerate the blockchain based
crowdsourcing system. The proposed framework can improve
the time efficiency, and enable the workers of crowdsourcing to
obtain the economic compensation for increased security risk.
We have determined the insurance premium and the number of
confirmations using Stackelberg Game, and shown that there
exists unique Stackelberg Equilibria. The experimental results
show that our smart contract based cyber-insurance framework
can definitely improve the time efficiency of crowdsourcing.

[1]
[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]
[22]

(23]

[24]

[25]

[26]

[27]

REFERENCES

S. Nakamoto, ”Bitcoin: A peer-to-peer electronic cash system,”
Manubot, 2009.

Y. Lu, Q. Tang, G. Wang, Zebralancer: Private and anonymous crowd-
sourcing system atop open blockchain,” in Proc. IEEE ICDCS, pp. 853-
865, 2018.

S. Wang, A. Taha, J. Wang, “Blockchain-Assisted Crowdsourced Energy
Systems,” in Proc. IEEE PESGM, pp. 1-5, 2018.

K. Toyoda, et al., A novel blockchain-based product ownership man-
agement system (POMS) for anti-counterfeits in the post supply chain,”
IEEE Access, vol.5, pp. 17465-17477, 2017.

Y. Huang, J. Zhang, J. Duan, B. Xiao, F. Ye, and Y. Yang, “Resource
Allocation and Consensus on Edge Blockchain in Pervasive Edge
Computing Environments,” in Proc. IEEE ICDCS, pp.1476-1486. 2019.
A. Kiayias, G. Panagiotakos, On Trees, "Chains and Fast Transactions in
the Blockchain,” in Proc. International Conference on Cryptology and
Information Security in Latin America, pp. 327-351, 2017.

X. Boyen, C. Carr, T. Haines, “Blockchain-free cryptocurrencies: A
framework for truly decentralised fast transactions,” Cryptology ePrint
Archive, Report, no. 871, 2016.

M. Zamani, M. Movahedi, M. Raykova, “RapidChain: A Fast
Blockchain Protocol via Full Sharding,” IACR Cryptology ePrint
Archive, pp. 460, 2018.

R. Pal, L. Golubchik, K. Psounis, et al., ”On a way to improve cyber-
insurer profits when a security vendor becomes the cyberinsurer,” in
Proc. IEEE IFIP Networking , pp. 1-9, 2013.

A. Marotta, F. Martinelli, S. Nanni, et al., "Cyber-insurance survey,”
Computer Science Review, vol. 24, pp. 35-61, 2017.

Go Ethereum, https://geth.ethereum.org/downloads/, [Online].

W. Vickrey, “Counterspeculation, Auctions, and Competitive Sealed
Tenders,” The Journal of Finance, vol. 16, no. 1, pp. 8C37, 1961.

M. Rosenfeld, ”Analysis of Hashrate-Based Double Spending,” arXiv
preprint, no. 1402.2009, 2014.

N. Atzei, M. Bartoletti, T. Cimoli, A survey of attacks on ethereum
smart contracts,” in Proc. International Conference on Principles of
Security and Trust, pp. 164-186, 2017.

M. Li, J. Weng, A. Yang, et al., "CrowdBC: A Blockchain-based
Decentralized Framework for Crowdsourcing,” IEEE Trans. Parallel and
Distributed Systems, vol. 30, no. 6, pp. 1251-1266, 2018.

Y. Velner, J. Teutsch, L. Luu, "Smart contracts make bitcoin mining
pools vulnerable,” in Proc. International Conference on Financial Cryp-
tography and Data Security, pp.298-316, 2017.

S. Feng, W. Wang, Z. Xiong, et al., "On Cyber Risk Management of
Blockchain Networks: A Game Theoretic Approach,” arXiv preprint,
no0.1804.10412 , 2018.

J. Xu, J. Fu, D. Yang, et al., "FIMI: A constant frugal incentive
mechanism for time window coverage in mobile crowdsensing,” Journal
of Computer Science and Technology, vol. 32, no. 5, pp. 919-935, 2017.
D. Yang, G. Xue, J. Zhang, et al., "Coping with a smart jammer in
wireless networks: A Stackelberg game approach,” IEEE Trans. Wireless
Communications, vol. 12, no. 8, pp. 4038-4047, 2013.
modelingonlineauctions, http://www.modelingonlineauctions.com/datasets,
[Online].

C. Grunspan, R. Prezmarco, "Double spend races,” arXiv preprint no.
1702.02867, 2017.

G. Wood, "Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, pp. 1-32, 2014.

P. Zhou, Y. Zheng, and M. Li, "How Long to Wait? Predicting Bus
Arrival Time With Mobile Phone Based Participatory Sensing,” IEEE
Trans. Mobile Computing, vol. 13, no. 6, pp. 1228-1241, 2014.

J. Xu, J. Xiang, D. Yang, “Incentive Mechanisms for Time Window
Dependent Tasks in Mobile Crowdsensing,” IEEE Trans. Wireless Com-
munications, vol. 14, no. 11, pp. 6353-6364, 2015.

J. Xu, Z. Rao, L. Xu, D. Yang, T. Li, "Incentive Mechanism for
Multiple Cooperative Tasks with Compatible Users in Mobile Crowd
Sensing via Online Communities,” [EEE Trans. Mobile Computing,
DOI: 10.1109/TMC.2019.2911512.

J. Xu, J. Xiang, Y. Li. Incentivize maximum continuous time interval
coverage under budget constraint in mobile crowd sensing,” Wireless
Networks, vol. 23, no. 5, pp. 1549-1562, 2017.

T. Chen , Y. Zhu , Z. Li, et al., "Understanding Ethereum via Graph
Analysis,” in Proc. IEEE INFOCOM, pp.1484-1492, 2018.

