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Abstract—Crowdsensing enables a wide range of data collec-
tion, where the data are usually tagged with private locations.
Protecting users’ location privacy has been a central issue.
The study of various location perturbation techniques, e.g. k-
anonymity, for location privacy has received widespread atten-
tion. Despite the huge promise and considerable attention, prov-
able good algorithms considering the trade-off between location
privacy and location information quality from the optimization
perspective in crowdsensing are lacking in the literature. In
this paper, we study two related optimization problems from
two different perspectives. The first problem is to minimize
the location quality degradation caused by the protection of
users’ location privacy. We present an efficient optimal algorithm
OLoQ for this problem. The second problem is to maximize
the number of protected users, subject to a location quality
degradation constraint. To satisfy different requirements of the
platform, we consider two cases for this problem: overlapping and
non-overlapping perturbations. For the former case, we give an
efficient optimal algorithm OPUMO. For the latter case, we first
prove its NP-hardness. We then design a (1 � �)-approximation
algorithm NPUMN and a fast and effective heuristic algorithm
HPUMN. Extensive simulations demonstrate that OLoQ, OPUMO,
and HPUMN significantly outperform an existing algorithm.

Index Terms—Crowdsensing, location data quality, location
privacy, k-anonymity.

I. INTRODUCTION

OVER the last decade, there has been an explosion of
smart devices, e.g. smartphones and tablets. In 2015,

there were available 3.2 billion smartphone subscriptions, with
6.2 billion predicted to be available in 2021 [13]. Current smart
devices are embedded with increasingly powerful processors
and a multitude of sensors (e.g., GPS, thermometer, micro-
phone, camera). The ubiquity of mobile devices into everyday
life can provide sufficient geographic coverage, especially in
densely populated areas. The mobile crowdsensing paradigm
serves as a critical building block for the emerging Internet
of Things (IoT) applications [19, 23, 24, 29, 30, 39], which
takes advantage of the widely distributed mobile devices
for sensing and collecting ubiquitous data, such as P-Sense
to monitor air pollution [11], Nericell to sense road and
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Figure 1: Location privacy preserving crowdsensing system

traffic conditions [20], and Ear-Phone to construct urban noise
maps [25]. The sensing data are usually tagged with locations
to form a database or a map for information release or decision
making.

It is essential to achieve location privacy protection, since
mobile users’ locations are tightly correlated with their identi-
ties and vulnerable to malicious attacks. Upon preserving lo-
cation privacy in crowdsensing, various methods are proposed
including information caching [27], spatial cloaking [33], data
perturbation with noise [40] and microaggregation [36]. The
goal is to prevent the servers or platforms from inferring users’
actual locations. However, these privacy preserving methods
need to hide the users’ actual locations, which usually degrade
the location (information) quality [6].

Location privacy and location quality are two conflicting
concerns in crowdsensing. On the one hand, disclosing users’
actual locations to the platform may severely discourage their
participation, because users are increasingly wary of location
privacy. On the other hand, the platform desires the actual
locations of users to ensure the location quality. It is necessary
to strike a good balance between location privacy and location
quality in crowdsensing. To quantify the impact of location
privacy protection on location quality, we define the location
quality degradation as the maximum distance between users’
actual locations and their corresponding perturbed locations.
Note that the summation of squared location errors (SSE) [28]
has also been used to measure location quality in the literature.
Although minimizing the SSE is not our objective, our simula-
tion results demonstrate that a low location quality degradation
also implies a low SSE.

In this paper, we study the trade-off between location
quality and location privacy. Location quality and location
privacy are two conflicting concerns in crowdsensing, which
naturally leads to a duality relation. On the one hand, for the
isolated users, the distances between their actual locations and
perturbed locations might be very large, because they have
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to share the same perturbed locations with the other users
to protect their location privacy. Thus, if all users’ location
privacy must be protected, this may cause a large location
quality degradation. On the other hand, if the location quality
degradation is a constraint, it might not be possible to find per-
turbed locations for the isolated users to protect their location
privacy, because they are too far from the others. Depending
on the preference of the crowdsensing platform, we consider
the optimization from two perspectives. If it desires to protect
all users’ location privacy, the problem can be formulated as
the Location Quality Degradation Minimization (LQDM)
problem: minimizing the location quality degradation, while
guaranteeing the location privacy for all users; if it desires
to bound the location quality degradation, the problem can
be formulated as the Protected User Maximization with
Location Quality Degradation Constraint (PUM) problem:
maximizing the number of users whose location privacy is
protected, subject to a location quality degradation constraint.
For the second problem, we consider overlapping and non-
overlapping cases to satisfy various requirements of the plat-
form. The difference is whether one user is allowed to be
tagged with more than one perturbed location. The rationale
behind the overlapping case is that the sensed data at one
location can well represent the results at nearby locations in
many crowdsensing applications, e.g., noise, temperature and
signal coverage. Note that we focus on only the overlapping
case for the LQDM problem because the non-overlapping case
often results in large location quality degradation due to the
constraint of including all users.

A. Contributions

We summarize the main contributions as follows:

• To the best of our knowledge, we are the first to con-
sider the trade-off between location privacy and location
quality in crowdsensing from optimization perspective.

• We first study the problem of optimizing the location
quality in terms of the location quality degradation, while
guaranteeing the location privacy for all users. We design
an efficient optimal algorithm to minimize the location
quality degradation among all users.

• We then investigate the problem of maximizing the num-
ber of users whose location privacy is protected, while
guaranteeing the location quality with a location qual-
ity degradation bound. Specifically, there are two cases
depending on the platform’s requirement: overlapping
and non-overlapping. For the former case, we design an
efficient optimal algorithm. For the latter case, we prove
its NP-hardness and design a near-optimal approximation
algorithm and a fast and effective heuristic algorithm that
achieves near-optimal performance in simulations.

The remainder of the paper is organized as follows. In
Section II, we give a brief review of existing location privacy
preserving mechanisms in the literature. In Section III, we
formally introduce the system model and give a precise
problem description. In Section IV, we present a polynomial-
time optimal algorithm for LQDM and analyze its properties.

In Section V, we study the PUM problem under the overlap-
ping perturbation and non-overlapping perturbation cases and
design corresponding algorithms. Section VI demonstrates the
experimental evaluations. Section VII concludes this paper.

II. RELATED WORK

A. Location Privacy Approaches

There is a rich collection of literature on location privacy in
general frameworks. Surveys for location privacy-preserving
methods can be found in [4, 9]. Following the discussions
in [9], we classify location privacy-preserving techniques
to three types: location generation [15, 38], cryptographic
techniques [19] and differential privacy [14]. Along the line of
location generation, various methods are proposed including
position dummies [15], mix zone [2], pseudonym [10], and
k-anonymity [38].

Much effort has also been made to protect location privacy
in crowdsensing systems [1, 8, 14, 18, 34, 35]. This line
of work aims at preventing location privacy leakage from
sensing reports submitted by crowdsensing users. Gao et al. [8]
designed a partner selection algorithm and construct several
trajectories that are closer to the users. Agir et al. [1] proposed
a scheme which estimated the expected location-privacy level
at the user-side locally in real-time, which satisfies each user’s
privacy requirement adaptively. Vu et al. [34] utilized Voronoi
diagram to partition a space into cells that contain at least
k users in each, without considering to minimize the cloak-
ing area. Differential location privacy in the crowdsourced
spectrum sensing was preserved in [14, 18, 35]. However, a
significant problem neglected in these works is to optimize the
crowdsensing platform’s location quality, while protecting the
users’ location privacy.

B. Location Information Quality

As pointed out by Krause et al. in [17], it is challenging to
balance between location privacy and location quality. Rodhe
et al. [26] considered two strategies based on different types of
system servers to reconstruct the data distribution and inves-
tigated the impact of location privacy preserving mechanisms
on the quality of information. Xiao et al. developed a directed-
graph based cloaking algorithm for protecting location privacy
in location-based service, while meeting user-specified quality
of service requirements [37]. Murshed et al. proposed a subset-
coding scheme to achieve almost lossless data integrity in [21].

Another related topic is the microaggregation problem:
divide a set of data into several disjoint subsets, such that
the size of each subset in more than k and the sum of
squared error is minimized. This problem has been studied to
strike a balance between privacy protection and information
loss reduction [5, 16, 28]. However, the location quality
degradation minimization is not considered in this problem.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the system model and give a
precise problem description.
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A. System Model

We consider a location-based crowdsensing system con-
sisting of a set U = {1, 2, . . . , n} of n users, a trusted
third party [32, 36] (e.g., a cellular service provider) and a
crowdsensing platform. Each user carries an advanced mobile
device with sensing capabilities and wishes to earn rewards
by completing crowdsensing tasks. The user registers with
the platform and communicates with the platform via an app
installed on his mobile device. Developed by the platform, the
app is assumed to pass the strict vetting process of the trusted
app store and has no unauthorized access to user’s locations.

We assume that the platform is honest but curious, which
is commonly used to characterize a reasonable crowdsensing
platform. Particularly, the platform is trusted to faithfully
follow the protocol but also interested in learning users’
locations. We assume that the platform can have arbitrary prior
knowledge for attempting to breach the users’ location privacy.

A precision-aware location privacy preserving crowdsensing
system is shown in Figure 1. The platform publishes crowd-
sensing tasks and collects location aware sensing data from
the users. The trusted third party, which is a cellular service
supposed to protect the location privacy. The workflow of the
system is as follows:

1) All the users report their actual locations L =
{l1, l2, . . . , ln} to the trusted third party for location
privacy protection.

2) The trusted third party processes the actual locations and
reports a set of perturbed locations {h1, h2, . . . , hm} to
the platform, where a perturbed location hj is tagged to
at least k users.

3) The users tagged with perturbed locations are reported
to the platform, and the rest users are discarded.

B. Problem Formulation

To formally formulate our studied problems, we introduce
the following necessary concepts. In order to preserve location
privacy, one solution is to make a user’s location indistinguish-
able from at least k − 1 others’ locations. This property is
proposed in [31] and called k-anonymity.
k-anonymity: To protect user’s privacy, it requires that at

least k reports are combined together before releasing.
Location perturbation: Location perturbation is defined as

deliberately degrading the quality of location information
about a user’s location in order to protect that user’s location
privacy. Similar definition has been proposed as obfusca-
tion [6]. However, the mechanism in [6] cannot be directly
applied to crowdsensing. We have discussed the difference
between LBS and crowdsensing in Section II-A.

Location quality degradation: The location quality degra-
dation is the maximum of a set of distances between users’
actual locations and their corresponding perturbed locations..

Perturbed group: A perturbed group is a set of users S ⊆ U
tagged with the same perturbed location, denoted by (h,S),
satisfying k-anonymity.

Apparently, the perturbation operation for protecting users’
location privacy causes inevitable location errors, which can
diminish the quality of the crowdsensing results. Thus it is

necessary to strike a good balance between location privacy
and location quality in crowdsensing. Therefore, it is essential
to control the location quality degradation while preserving
users’ location privacy. Towards this goal, we consider the fol-
lowing two related optimization problems from two different
perspectives in this paper:

1) Location Quality Degradation Minimization
(LQDM): Given a set of n users’ actual locations
and an integer k ≤ n, form a set of perturbed groups,
denoted by H, including all users to minimize the
location quality degradation.

2) Protected User Maximization with Location Quality
Degradation Constraint (PUM): Given a set of n
users’ actual locations, an integer k ≤ n, and a location
quality degradation bound δ, form a set of perturbed
groups, denoted by H, to include a maximum number
of users, such that the location quality degradation is no
more than δ.

Depending on the platform’s requirement, we consider two
cases: overlapping perturbation, where one user is allowed to
be tagged with more than one perturbed location, and non-
overlapping perturbation, where one user is tagged with at
most one perturbed location. The rationale behind the over-
lapping case is that the sensed data at one location can well
represent the results at nearby locations in many crowdsensing
applications, e.g., temperature and signal coverage. We denote
the PUM problem under these two cases by PUMO and
PUMN, respectively. Note that we focus on only the overlap-
ping case for the LQDM problem because the non-overlapping
case often results in large location quality degradation due to
the constraint of including all users.

Note that in the literature, the summation of squared loca-
tion errors (SSE) [28] has been used to measure data quality. In
this paper, we use the location quality degradation, Some large
errors are still detrimental to the crowdsensing application with
a small SSE. Whereas, a small location quality degradation
guarantees that none of the errors exceeds this value. Although
we do not focus on minimizing the SSE, extensive simulations
show that our algorithm achieves a lower SSE, compared to an
existing k-anonymity location privacy preserving algorithm.

C. Geometric Problem Transformation

Both LQDM and PUM problems can be transformed into
equivalent geometric problems. Before the transformation, we
introduce the following definition.

Let P denote a plane. For any two points p ∈ P and q ∈ P ,
we use ||p, q|| to denote the Euclidean distance between p and
q. A disk centered at c of radius r is denoted by D(c, r). We
say D(c, r) covers p, if p ∈ D(c, r), i.e., ||p, c|| ≤ r. Let
B(c, r) denote the closed boundary of D(c, r). Given a set
L of n points, let D(L, r) denote a set of disks of radius r
centered at points in L.

Definition 1 (k-enclosing Disk). Let L be a set of n points
on the plane P . Given an integer k ≤ n, a k-enclosing disk
is a disk that covers at least k points in L.

The transformed LQDM and PUM problems are:
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1) LQDM: Given a set L of n points on the plane P and
an integer k ≤ n, find a minimum r and a set of k-
enclosing disks D = {D(h1, r), D(h2, r), . . .}, such that
any li ∈ L is covered by at least one disk in D.

2) PUM: Given a set L of n points on the plane P ,
an integer k ≤ n and a constant δ, find a set of k-
enclosing disks D = {D(h1, δ), D(h2, δ), . . .}, such that
a maximum number of points in L are covered by disks
in D.

To solve these problems, we need the following definitions
and claims from [7].

Definition 2 (Depth of a Point). Given a point p ∈ P and
a disk set D(L, r), the depth of p with respect to D(L, r),
denoted by dD(L,r)(p), is the number of disks in D(L, r)
covering p.

Definition 3 (Depth of a Disk). Given a point li ∈ L and a
disk set D(L, r), the depth of D(li, r), denoted by dD(li,r), is
the maximum depth of all points p ∈ D(li, r):

dD(li,r) = max
p∈D(li,r)

{dD(L,r)(p)}.

Claim 1. Given two points p, q ∈ P , p ∈ D(q, r) if and only
if q ∈ D(p, r).

Claim 2. The depth of a point p ∈ P in D(L, r) is the number
of points in L covered by D(p, r).

Definition 4 (Critical Radius). Given any li ∈ L, a radius r
is a critical radius, if dD(li,r) decreases, when r is decreased
by an arbitrarily small amount.

At last, we have three geometrical facts as follows.

1) The point on D(li, r) with maximum depth must be
an intersection point on B(li, r), if B(li, r) intersects
with the boundary of any other disk in D(L, r). Then
we only focus on the intersection points on B(li, r) for
computing dD(li,r).

2) Given any li ∈ L, let r∗i denote the minimum radius
r, such that dD(li,r) ≥ k. We can locate r∗i within a
feasible range of r using the following criteria:

• dD(li,r) < k → r < r∗i ;
• dD(li,r) > k → r > r∗i ;
• dD(li,r) = k → r ≥ r∗i .

3) A radius r can be a critical radius only if B(li, r)
is tangent to B(lj , r), or B(li, r) is concurrent with
B(lj , r) and B(lk, r), where li, lj , lk ∈ L. In other
words, a critical radius is either 1

2 ||li, lj ||, denoted by
rij , or a circumradius of a triangle with li, lj and lk as
the vertices, denoted by rijk.

The main notations are summarized in Table 1.

IV. OPTIMAL ALGORITHM FOR LQDM

In this section, we present an efficient optimal algorithm
OLoQ for the LQDM problem.

Table 1: Main notations

Notation Meaning
U a set of users {1, 2, . . . , n}

(h,S) a perturbed group, where all users in S are tagged with h
H a set of perturbed groups
P a plane
li the actual location (a point on P) of user i
L the set of actual locations (points on P) of users in U

D(p, r) the disk of radius r, centered at p ∈ P
D(L, r) the set of disks with radius r, centered at points in L

dD(L,r)(p) the depth of a point p with respect to D(L, r)
dD(li,r)

the depth of a disk D(li, r)
B(p, r) the closed boundary of D(p, r)

r∗i the minimum radius of a k-enclosing disk to cover li
p∗i the center of the smallest k-enclosing disk to cover li

A. Overview

Since r∗i is the minimum radius, such that li is covered by a
k-enclosing disk, the minimum radius in the optimal solution
to the LQDM problem equals maxli∈L r

∗
i , denoted by r∗.

Thus the LQDM problem boils down to finding r∗i for each
li ∈ L. Based on Fact 2) in Section III-C, it is necessary to
determine a range in order to locate r∗i . To locate the exact
value of r∗i , we need to discretize its range. By the definition
of critical radius, r∗i must be a critical radius of li. Thus we
focus on critical radii and conduct a binary search among
them for locating r∗i . According to Fact 3), a critical radius
of li can only be rij or rijk, where lj , lk ∈ L, i 6= j 6= k.
Once r∗i is located, we find the point of maximum depth
on D(li, r

∗
i ), denoted by p∗i . Then a set of k-enclosing disks

D = {D(p∗i , r
∗) | li ∈ L} can cover all li ∈ L. However, not

all disks in D are necessary. Thus we select a minimal D∗ ⊆ D
covering all points in L. The centers of the selected disks are
the perturbed locations.

B. Algorithm Design

OLoQ includes one key algorithm to find the smallest k-
enclosing disk covering li ∈ L, illustrated in Algorithm 1.

In Algorithm 1, we narrow the range where r∗i can lie and
locate r∗i . To narrow the range where r∗i can lie, we collect the
n − 1 values of rij and sort them in a non-decreasing order.
Note that each rij is corresponding to a tangent point pij of
B(li, rij) and B(lj , rij), which is the midpoint of line lilj .
Then the range can be narrowed to (rij , r̄ij ].

Then we collect (n−1)(n−2)
2 values of rijk and only keep

the values of rijk within the range (rij , r̄ij ]. If there is no
rijk within this range, then r∗i is r̄ij and its corresponding
p∗i is p̄ij . Otherwise, we sort the values of rijk within the
range (rij , r̄ij ] in a non-decreasing order. Note that each rijk
is corresponding to a point pijk, which is the circumcenter
of the triangle with li, lj and lk as the vertices. Using binary
search, we further restrict the range to (rijk, r̄ijk], which is the
smallest range such that dD(li,rijk) < k and dD(li,r̄ijk) ≥ k.
Therefore r∗i is r̄ijk, and p∗i is the p̄ijk corresponding to r̄ijk.

At the end, Algorithm 1 outputs (r∗i , p
∗
i ), which forms the

smallest k-enclosing disk D(r∗i , p
∗
i ) that covers li. We shall

run Algorithm 1 for each li ∈ L. Then the minimum radius
in the optimal solution to the LQDM problem is maxli∈L r

∗
i .

Next, we generate a set of k-enclosing disks D∗ =
{D(h1, r

∗), D(h2, r
∗), . . .}, such that any li ∈ L is
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Algorithm 1: Find-k-enclosing-Disk(li, k,L)

1 Sort all values in {rij | lj ∈ L\{li}} in a non-decreasing
order and obtain a sorted list Rij ;

2 Run a binary search in Rij to find two consecutive
values of rij , denoted by rij and r̄ij , such that
dD(li,rijk) < k and dD(li,r̄ij) ≥ k;

3 Sort all values in {rijk | rijk ∈ (rij , r̄ij ], lj , lk ∈ L\{li}}
in a non-decreasing order and obtain a sorted list Rijk;

4 if Rijk = ∅ then
5 r∗i ← r̄ij ; p∗i ← p̄ij ;
6 else
7 Run a binary search in Rijk to find two consecutive

values of rijk, denoted by rijk and r̄ijk, such that
dD(li,rijk) < k and dD(li,r̄ijk) ≥ k;

8 r∗i ← r̄ijk; p∗i ← p̄ijk;

9 return (r∗i , p
∗
i )

Algorithm 2: OLoQ (L, k)

1 H ← ∅; D∗ ← ∅;
2 for li ∈ L do
3 r∗i ← Find-k-enclosing-Disk( li, k,L );
4 r∗ ← maxli∈L r

∗
i ;

5 Sort points in L based on r∗i in a non-increasing order
and obtain a sorted list L;

6 for li ∈ L do
7 if li is uncovered by D∗ then
8 D∗ ← D∗ ∪ {D(p∗i , r

∗)};
9 H ← H∪ {(p∗i , {i | li ∈ D(p∗i , r

∗)})} ;

10 return (H, r∗)

covered by at least one disk in D∗. By the previous
steps, we can obtain a set of k-enclosing disks D =
{D(p∗1, r

∗), D(p∗1, r
∗), . . . , D(p∗n, r

∗)} covering all points in
L. However, not all of them are necessary. So we design
Algorithm 2 to select a minimal D∗ ⊆ D covering all points
in L. The idea is to select disks iteratively. In each iteration
we select a disk covering as many points as possible. Thus we
sort n values of r∗i for all li ∈ L in a non-increasing order
and select disks sequentially according to the sorted list. If li
has not been covered, we add D(p∗i , r

∗) to D∗. For all users
whose actual locations are covered by D(p∗i , r

∗), we form a
perturbed group with p∗i as their perturbed location.

The time complexity of Algorithm 1 is O(n2 log n). The
time complexity of Algorithm 2 is O(n). Therefore, the time
complexity of OLoQ is O(n3 log n). It can be proved that
OLoQ returns an optimal solution to LQDM [41].

V. ALGORITHMS FOR PUM

In this section, we study the PUM problem under the over-
lapping perturbation and non-overlapping perturbation cases,
denoted by PUMO and PUMN, respectively. Then we design
corresponding algorithms for them.

A. Optimal Algorithm for PUMO

In this subsection, we develop an efficient optimal algorithm
OPUMO for the PUMO problem.

We first introduce the intuition behind OPUMO. We know
that r∗i is the minimum radius r, such that li is covered by
a k-enclosing disk. It implies that for any point li ∈ L, if
r∗i > δ, then li can never be covered in a k-enclosing disk
of radius δ. Thus we can discard such points from L. For
the remaining points in L, we select a subset Dδ ⊆ D =
{D(p∗1, δ), D(p∗1, δ), . . . , D(p∗n, δ)} to cover all of them. The
centers of the selected disks are the perturbed locations.

The details of OPUMO are described as follows. Using Al-
gorithm 1 in Section IV-B, we can obtain a set of k-enclosing
disks D = {D(p∗1, δ), D(p∗1, δ), . . . , D(p∗n, δ)}. Similar to
Algorithm 2, we sort the values of r∗i for all li ∈ L in a
non-increasing order and select a subset of disks Dδ ⊆ D
sequentially according to the sorted list. The fundamental
difference from OLoQ is that for any point li ∈ L, if r∗i > δ,
we discard li from L. Then if li has not been covered and its
corresponding r∗i ≤ δ, we add D(p∗i , δ) to Dδ . For all users
whose actual locations are covered by D(p∗i , δ), we form a
perturbed group (p∗i , {i | li ∈ D(p∗i , δ)}). Then p∗i is set to be
their perturbed location.

Since OPUMO is similar to OLoQ, the overall time com-
plexity of OPUMO is O(n3 log n) as well. The optimality of
OPUMO is guaranteed by the following theorem.

Theorem 1. OPUMO returns an optimal solution to PUMO.

Proof. We first prove that each user i included in the perturbed
groups is tagged with the same perturbed location as at least
k − 1 other users and then prove that the maximum number
of users are included in the formed perturbed groups.

For each li ∈ L, it guarantees that dD(li,r∗i ) ≥ k, based
on Lines 2 and 7 in Algorithm 1. Since p∗i is the point with
maximum depth on D(li, r

∗
i ), we have dD(L,r∗i )(p

∗
i ) ≥ k. By

Claim 2, D(p∗i , r
∗
i ) covers at least k points in L. By Claim

1, we have li ∈ D(p∗i , r
∗
i ). With r∗i ≤ δ, we know that

D(p∗i , δ) covers at least k points in L and li ∈ D(p∗i , δ), as
well. Thus there are at least k users in each perturbed group
(p∗i , {i | li ∈ D(p∗i , δ)}). Therefore each user i included in the
perturbed groups is tagged with the same perturbed location
with at least k − 1 other users.

We learned from the proof above that r∗i is the minimum
radius, such that user i is tagged with the same perturbed
location as at least k − 1 other users. So we know that if
r∗i > δ, then user i can never be included in a perturbed
group. Because the users with r∗i > δ are discarded, and the
users with r∗i ≤ δ are included in the perturbed groups, we
know that the maximum number of users are included in the
formed perturbed groups.

B. Algorithms for PUMN

In this subsection, we design a near-optimal approxima-
tion algorithm NPUMN and an effective heuristic algorithm
HPUMN. The PUMN problem can be proved to be NP-
hard [41] by a reduction from the Disjoint Unit-Disk Cover
problem, which has been proved to be NP-hard in [12].
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Therefore, the PUMN problem is unlikely to have an effi-
cient optimal algorithm, unless P = NP. Thus we design an
approximation algorithm NPUMN by applying the shifted grid
technique. The shifting technique has two stages. In the first
stage, the plane is partitioned into squares with each having
a size of s× s . By shifting the partition grid lines over unit
distance, a new way of partitioning can be derived. We call
each way of partitioning a “shift”. Thus there are s× s shifts
in total.

The second stage is to use a local algorithm to find an
optimal solution within each square. Then the union of all
squares’ solutions is the global solution for a shift. The final
solution is the one with the best performance among all shifts.
A brute-force algorithm can find the optimal solution within an
s×s square in exponential time. Since an s×s square can be
covered with 2s2 unit disks compactly, there are O( 8

ε2 ) disks
in the optimal solution to cover np points inside the square.
Since we can always move a disk in the optimal solution, such
that at least 2 points are on its boundary, there are O(n2

p)
disk positions. To select O( 8

ε2 ) from O(n2
p) disks, we check

O(n
16/ε2

p ) disk arrangements. In each arrangement, we check
np points’ positions in O(( 8

ε2 )np) time. Therefore, the overall
time complexity of the local algorithm is O( 8np

ε2np n
16/ε2

p ).
For the shifted grid technique, we only discuss the local
algorithm’s complexity, because the local algorithm (Lines 6-7
in Algorithm 3) can be run in parallel in multiple squares.

Theorem 2. The approximation ratio of NPUMN is 1 − ε,
where ε > 0 is an arbitrarily small constant.

Proof. Let OPT be the set of points in an optimal solution,
OPT(i,j) be the set of points in the global solution of shift
(i, j) and OPT ′(i,j) be the set of points in OPT intersecting
the lines x = as+i and y = bs+j, where a, b ∈ {0, 1, 2, . . .}.
Then, we have |OPT(i,j)|+ |OPT ′(i,j)| ≥ |OPT |, and thus

s∑
i=1

s∑
j=1

(|OPT(i,j)|+ |OPT ′(i,j)|) ≥ s
2|OPT |,

because
∑s
i=1

∑s
j=1 |OPT ′(i,j)| ≤ 2s|OPT |, we have∑s

i=1

∑s
j=1 |OPT(i,j)| ≥ (s2 − 2s)|OPT |, and thus,

max
i,j∈{1,...,s−1}

|OPT(i,j)| ≥ (1− 2

s
)|OPT | = (1− ε)|OPT |.

Even though the time complexity is exponential to the
maximum number of points in any square, the number of users
in each square is small in practice. We conduct studies on the
roma taxi dataset [3] and the San Francisco taxi dataset [22].
Table 2 shows the maximum number of users in a square.

To further reduce the time complexity, we design a fast and
effective heuristic algorithm HPUMN that can achieve near-
optimal performance in practice, although not theoretically.

The details of HPUMN are as follows. When L contains
more than k points, we compute the disk depth dD(li,δ)

for each li ∈ L. If dD(li,δ) < k, then we discard li
from L. For the remaining points in L, we extract the
point lmin, whose corresponding disk depth dD(li,δ) is the
minimum among all disks. Then we find the point with

Algorithm 3: NPUMN (L, k, δ, ε)
1 Normalize the plane with respect to δ;
2 s← 2

ε ;
3 in parallel for i← 1 to s and j ← 1 to s do
4 Partition the plane into squares with each having a

size of s× s, by drawing grid lines x = i+ as and
y = j + bs, where a, b ∈ Z ;

5 in parallel for each square do
6 Construct s(s− 1) unit disks s.t. at least 2 points

in L are on the boundary;
7 Use a brute-force algorithm to select an optimal

disk set for this square, which contains at most
2s2 disks;

8 Combine the selected disk sets as the global solution;

9 Pick the solution Dδ that includes the maximum number
of points among;

10 Construct H based on disks in Dδ;
11 return H

Table 2: Maximum number of users in a square

Dataset 1.5× 1.5 km2 2× 2 km2 2.5× 2.5 km2

roma taxi [3] 17 22 30
SF taxi [22] 23 29 34

maximum depth on dD(lmin,δ), denoted by p∗min. It is obvious
that dD(L,δ)(p

∗
min) ≥ k, and we obtain a k-enclosing disk

D(p∗min, δ). Then we add D(p∗min, δ) to Dδ . For the remaining
points covered by D(p∗min, δ), we form a perturbed group
(p∗min, {i | li ∈ D(p∗min, δ) ∩ L}) and tag p∗min to the corre-
sponding users as their perturbed location. Then we discard
these locations from L. We keep forming perturbed groups
and discarding points until there are less than k points in L.

Algorithm 4: HPUMN (L, k, δ)

1 H ← ∅; Dδ ← ∅;
2 while |L| ≥ k do
3 for li ∈ L do
4 Update dD(li,δ);
5 if dD(li,δ) < k then L ← L\{li};
6 if maxli∈L dD(li,δ) < k then break;
7 lmin ← arg minli∈L dD(li,δ) ;
8 Find the point p∗min ∈ D(lmin, δ) of maximum depth;
9 Dδ ← Dδ ∪ {D(p∗min, δ)};

10 H ← H∪ {(p∗min, {i | li ∈ D(p∗min, δ) ∩ L})};
11 L ← L\{li | li ∈ D(p∗min, δ)};
12 return H

Theorem 3. HPUMN preserves k-anonymity location privacy.

Proof. We prove that each user i included in the perturbed
groups is tagged with the same perturbed location as at least
k − 1 other users.

For each lmin ∈ L, it guarantees that dD(lmin,δ) ≥ k,
based on Line 5 in Algorithm 4. Since p∗min is the point with
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Figure 2: Impact of n on OLoQ and VCLA: (a) SSE and (b)
Location quality degradation (km).

maximum depth on D(lmin, δ), we have dD(L,δ)(p
∗
min) ≥ k.

By Claim 2, D(p∗min, δ) covers at least k points in L.
Thus there are at least k users in each perturbed group
(p∗min, {i | lmin ∈ D(p∗min, δ)}). Therefore each user i in-
cluded in the perturbed groups is tagged with the same
perturbed location with at least k − 1 other users.

The time complexity of HPUMN is dominated by the nested
while-loop and for-loop. The while-loop takes O(nk ) time. The
for-loop takes O(n) time to update disk depth. Hence the
overall time complexity of HPUMN is O(n

3

k ).

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of OLoQ,
OPUMO and HPUMN by comparing them with existing k-
anonymity location privacy preserving algorithms [36].

A. Evaluation Setup

As we surveyed in Section II, there is no existing algorithm
that aims to minimize the location quality degradation or to
maximize the number of protected users. The most related
work for k-anonymity location privacy is VCLA [36], which is
a heuristic algorithm that uses the microaggregation approach
to obtain anonymized locations and aims to minimize the
summation of squared errors (SSE).

We use the CRAWDAD dataset roma/taxi [3] for our
simulations. The dataset contains the mobility traces of ap-
proximately 320 taxis collected over 30 days in Rome, Italy.
Each mobility trace consists of a sequence of GPS coordinates
collected roughly every seven seconds along with correspond-
ing timestamps. Because our model does not require the time
information, we removed the timestamps from the whole 30-
day dataset and treated all the data points as independent. We
then randomly select data points as input to our algorithms.
Investigating the trade-off between location quality and privacy
with both spatial and temporal information will be one of our
future research directions as we will discuss in Section VII.

B. Performance Metrics

We are interested in the following performance metrics.
• SSE: Suppose a point set L is divided into m groups. The

sum of squared errors of perturbed group j is defined as:

ssej =

nj∑
p=1

[(xjp − x̄j)2 + (yjp − ȳj)2]
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Figure 3: Impact of k on OLoQ and VCLA: (a) SSE and (b)
Location quality degradation (km).

where nj is the number of users in j-th group satisfying
nj ≥ k, (xjp, yjp) is the location of the pth user with
(x̄j , ȳj) the perturbed location of j-th group. The SSE is
the sum of ssej :

SSE =
m∑
j=1

ssej =
m∑
j=1

nj∑
p=1

[(xjp − x̄j)2 + (yjp − ȳj)2],

where SSE describes the overall group homogeneity
after group formation. When nearby points are grouped
together, SSE will be small and the groups are more
homogeneous.

• Location quality degradation
• Number of protected users
In our evaluation, we show the impact of the number of

users (n) and k on OLoQ and VCLA in terms of SSE and
location quality degradation. For the impact of n, we vary
it from 200 to 1000 with an increment of 200, while fixing
k = 5. For the impact of k, we set it to be 2, 3, 5, 7, 10, while
fixing n = 400.

Then we show the impact of the number of users (n), the
value of k, and the location quality degradation bound (δ)
on OPUMO HPUMN and VCLA in terms of the number of
protected users. For the impact of n, we vary it from 200 to
1000 with an increment of 200, fixing k = 5 and δ = 500m.
For the impact of k, we set it to be 2, 3, 5, 7, 10, fixing n = 400
and δ = 500m. For the impact of δ, we vary it from 500m to
2500m with an increment of 500m, fixing n = 400 and k = 5.
We choose this range of δ, because this error is tolerable for
location quality in most crowdsensing applications. All results
are averaged over 100 independent runs.

In addition, we show the impact of ε and k on NPUMN

in terms of the number of protected users. For the impact of
ε, we set it to be 1

750 ,
1

1000 ,
1

1250 , while fixing n = 50 and
δ = 500. For the impact of k, we vary it from 3 to 5 with an
increment of 1, while fixing n = 50 and k = 4. Due to the
high time complexity of NPUMN, all results are averaged for
30 independent runs.

C. Evaluation Results and Analysis

Figure 2 shows the impact of n on OLoQ and VCLA. Figure
2(a) shows the impact of n on SSE. We observe that OLoQ can
always introduce lower SSE, which is very essential to obtain
accurate sensing data. Besides, the SSE increases with n,
because sparser location distribution will lead to larger errors.
In Figure 2(b), the location quality degradations of OLoQ and
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Figure 4: Impact of n, k and δ on OPUMO, HPUMN and VCLA: (a) Impact of n (k = 5, δ = 1000), (b) Impact of k
(n = 400, δ = 1000) and (c) Impact of δ (k = 5, n = 400).

k
3 4 5

#
 o

f 
p
ro

te
c
te

d
 u

s
e
rs

0

5

10

15

20
HPUM

N

NPUM
N

(a)
ǫ

1/750 1/1000 1/1250

#
 o

f 
p
ro

te
c
te

d
 u

s
e
rs

0

5

10

15
NPUM

N

(b)

Figure 5: Impact of k and l on HPUMN and NPUMN: (a)
Impact of k (ε = 10−3) and (b) Impact of ε (n = 50).

VCLA decrease with n. We also observe that OLoQ performs
better than VCLA, especially with fewer users, because OLoQ
minimizes the location quality degradation optimally, while
VCLA heuristically aggregate locations by first choosing the
farthest point and then aggregating the nearest points to it.

Figure 3 shows the impact of k on OLoQ and VCLA.
Figure 3(a) illustrates that the SSE gradually increases with
more stringent privacy protection in both OLoQ and VCLA.
To protect more users’ locations in one perturbed group,
it is inevitable to diminish the location quality to some
degree. OLoQ has a lower SSE, because it minimizes the
location quality degradation. From Figure 3(b), we observe
that, OLoQ outputs perturbed groups with minimum location
quality degradation and performs significantly better than
VCLA. The common trend is that, with more stringent privacy
protection the location quality degradation increases in both
OLoQ and VCLA.

Figure 4 shows the impact of n, k and δ on OPUMO,
HPUMN and VCLA. Figure 4(a) illustrates that the num-
ber of protected users increases with more users involved.
OPUMO includes most protected users, because it is an
optimal algorithm that allows overlapping. We can also see
that the performance of HPUMN is very close to OPUMO.
Since OPUMO allows overlapping and already includes all the
possible users with the location quality degradation constraint,
the optimal solution in the non-overlapping case can never
include more users than OPUMO. Thus HPUMN achieves
near-optimal performance. In addition, VCLA includes fewer
protected users, because VCLA always chooses the farthest
point to form a new group. Figure 4(b) illustrates that the
number of protected users decreases, when k increases. The
reason is that a larger k requires more stringent privacy protec-
tion, while the location quality degradation bound remains the

same, which makes some users unprotected. We also notice
that HPUMN’s performance is very close to OPUMO. Since
the optimal solution in the non-overlapping case is no greater
than that of the overlapping case, we can say that HPUMN

achieves near-optimal performance. Whereas, VCLA includes
fewer protected users, because it forms perturbed groups by
choosing the farthest point and then aggregating the nearest
points to it. Figure 4(c) demonstrates that the number of
protected users increases when δ is larger. Because more users’
locations can included in a perturbed group with a larger δ.

Figure 5 shows the impact of k and ε on NPUMN. In
Figure 5(a), we observe that the number of protected users
decreases. A larger k requires more stringent privacy pro-
tection, while the location quality degradation bound remains
the same, which makes some users unprotected. In addition,
NPUMN achieves better performance than HPUMN, because
NPUMN has an approximation close to 1 when ε is very small.
In Figure 5(b), we notice that the number of protected users
increases, because the approximation ratio increases when the
value of ε decreases.

VII. CONCLUSION AND FUTURE WORK

In this paper, we considered the trade-off between location
privacy and location quality in location-based crowdsensing
from optimization perspective. Two optimization problems
haven been studied. The first problem is to minimize the
location quality degradation, while guaranteeing the location
privacy for all users. We presented an efficient optimal al-
gorithm OLoQ for this problem. The second problem is to
maximize the number of protected users with a location quality
degradation constraint. To satisfy different requirements of the
platforms, we further considered two cases: overlapping and
non-overlapping perturbations. For the former case, we gave
an efficient optimal algorithm OPUMO. For the latter case, we
proved its NP-hardness, and designed a near-optimal (1− ε)-
approximation algorithm NPUMN and a fast and effective
heuristic algorithm HPUMN. Extensive simulations show that
OLoQ and OPUMO achieve optimal performance. In addition,
NPUMN and HPUMN achieve near-optimal performance.

There are two directions that we can work on in the future.
In the current work, we assume that all users require the same
anonymity level. Our algorithms can be extended to a per-
sonalized k-anonymity model, where each user can specify a
different anonymity level requirement. Another direction is to
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consider temporal information privacy protection, because the
crowdsensing data are sometimes time-sensitive. An attacker
can infer a user’s personal preference or behaviors based on
the user’s location information combined with its temporal
information. Thus, it will be better to perturb both the spatial
and temporal information.

In addition, we plan to conduct the mobile crowdsensing
on constructing urban noise maps [42] as a case study. People
in major cities suffer from noise pollution, which compro-
mises working efficiency and mental health. Urban noises
usually vary by locations, change over time, and consist of
multiple sound sources., e.g., loud music, vehicle traffic and
constructions. New York City (NYC) has opened a platform
CityNoise [42] to allow people to submit the urban noise sens-
ing data tagged with locations by using a mobile app, which
is location-aware and open source. Our proposed algorithms
will process the sensing data by tagging them with perturbed
locations. With the processed location data, we will be able
to generate the noise map and study the trade-off between
location quality and privacy.
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